Retrying¶
One of the benefits of having Pydantic is the ease with which we can define validators. We cover this topic in many articles, like Reasking Validation and in our blog post Good LLM validation is just good validation.
This post will mostly describe how to use simple and more complex retry and logic.
Example of a Validator¶
Before we begin, we'll use a simple example of a validator. One that checks that the name is in all caps. While we could obviously prompt that we want the name in all caps, this serves as an example of how we can build in additional logic without changing our prompts.
To use simple retry, we just need to set `max_retries`` as an integer. In this example.
from typing import Annotated
from pydantic import AfterValidator, BaseModel
def uppercase_validator(v):
if v.islower():
raise ValueError("Name must be ALL CAPS")
return v
class UserDetail(BaseModel):
name: Annotated[str, AfterValidator(uppercase_validator)]
age: int
try:
UserDetail(name="jason", age=12)
except Exception as e:
print(e)
"""
1 validation error for UserDetail
name
Value error, Name must be ALL CAPS [type=value_error, input_value='jason', input_type=str]
For further information visit https://errors.pydantic.dev/2.7/v/value_error
"""
Simple: Max Retries¶
The simplest way of defining a retry is just defining the maximum number of retries.
import openai
import instructor
from pydantic import BaseModel
class UserDetail(BaseModel):
name: str
age: int
client = instructor.from_openai(openai.OpenAI(), mode=instructor.Mode.TOOLS)
response = client.chat.completions.create(
model="gpt-4-turbo-preview",
response_model=UserDetail,
messages=[
{"role": "user", "content": "Extract `jason is 12`"},
],
max_retries=3, # (1)!
)
print(response.model_dump_json(indent=2))
"""
{
"name": "jason",
"age": 12
}
"""
# (2)!
- We set the maximum number of retries to 3. This means that if the model returns an error, we'll reask the model up to 3 times.
- We assert that the name is in all caps.
Catching Retry Exceptions¶
If you want to catch the retry exceptions, you can do so and access the last_completion
, n_attempts
and messages
attributes.
from pydantic import BaseModel, field_validator
import openai
import instructor
from instructor.exceptions import InstructorRetryException
from tenacity import Retrying, retry_if_not_exception_type, stop_after_attempt
# Patch the OpenAI client to enable response_model
client = instructor.from_openai(openai.OpenAI())
# Define a Pydantic model for the user details
class UserDetail(BaseModel):
name: str
age: int
@field_validator("age")
def validate_age(cls, v: int):
raise ValueError(f"You will never succeed with {str(v)}")
retries = Retrying(
retry=retry_if_not_exception_type(ZeroDivisionError), stop=stop_after_attempt(3)
)
# Use the client to create a user detail
try:
user = client.chat.completions.create(
model="gpt-3.5-turbo",
response_model=UserDetail,
messages=[{"role": "user", "content": "Extract Jason is 25 years old"}],
max_retries=retries,
)
except InstructorRetryException as e:
print(e.messages[-1]["content"]) # type: ignore
"""
1 validation error for UserDetail
age
Value error, You will never succeed with 25 [type=value_error, input_value=25, input_type=int]
For further information visit https://errors.pydantic.dev/2.7/v/value_error
"""
print(e.n_attempts)
#> 3
print(e.last_completion)
"""
ChatCompletion(id='chatcmpl-9FaHq4dL4SszLAbErGlpD3a0TYxi0', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_XidgLpIu1yfaq876L65k91RM', function=Function(arguments='{"name":"Jason","age":25}', name='UserDetail'), type='function')]))], created=1713501434, model='gpt-3.5-turbo-0125', object='chat.completion', system_fingerprint='fp_d9767fc5b9', usage=CompletionUsage(completion_tokens=27, prompt_tokens=513, total_tokens=540))
"""
Advanced: Retry Logic¶
If you want more control over how we define retries such as back-offs and additional retry logic we can use a library called Tenacity. To learn more, check out the documentation on the Tenacity website.
Rather than using the decorator @retry
, we can use the Retrying
and AsyncRetrying
classes to define our own retry logic.
import openai
import instructor
from pydantic import BaseModel
from tenacity import Retrying, stop_after_attempt, wait_fixed
client = instructor.from_openai(openai.OpenAI(), mode=instructor.Mode.TOOLS)
class UserDetail(BaseModel):
name: str
age: int
response = client.chat.completions.create(
model="gpt-4-turbo-preview",
response_model=UserDetail,
messages=[
{"role": "user", "content": "Extract `jason is 12`"},
],
max_retries=Retrying(
stop=stop_after_attempt(2), # (1)!
wait=wait_fixed(1), # (2)!
), # (3)!
)
print(response.model_dump_json(indent=2))
"""
{
"name": "jason",
"age": 12
}
"""
- We stop after 2 attempts
- We wait 1 second between each attempt
- We can now define our own retry logic
asynchronous retries¶
If you're using asynchronous code, you can use AsyncRetrying
instead.
import openai
import instructor
from pydantic import BaseModel
from tenacity import AsyncRetrying, stop_after_attempt, wait_fixed
client = instructor.from_openai(openai.AsyncOpenAI(), mode=instructor.Mode.TOOLS)
class UserDetail(BaseModel):
name: str
age: int
task = client.chat.completions.create(
model="gpt-4-turbo-preview",
response_model=UserDetail,
messages=[
{"role": "user", "content": "Extract `jason is 12`"},
],
max_retries=AsyncRetrying(
stop=stop_after_attempt(2),
wait=wait_fixed(1),
),
)
import asyncio
response = asyncio.run(task)
print(response.model_dump_json(indent=2))
"""
{
"name": "jason",
"age": 12
}
"""
Other Features of Tenacity¶
Tenacity features a huge number of different retrying capabilities. A few of them are listed below.
Retrying(stop=stop_after_attempt(2))
: Stop after 2 attemptsRetrying(stop=stop_after_delay(10))
: Stop after 10 secondsRetrying(wait=wait_fixed(1))
: Wait 1 second between each attemptRetrying(wait=wait_random(0, 1))
: Wait a random amount of time between 0 and 1 secondsRetrying(wait=wait_exponential(multiplier=1, min=4, max=10))
: Wait an exponential amount of time between 4 and 10 secondsRetrying(wait=(stop_after_attempt(2) | stop_after_delay(10)))
: Stop after 2 attempts or 10 secondsRetrying(wait=(wait_fixed(1) + wait_random(0.2)))
: Wait at least 1 second and add up to 0.2 seconds
Remember that for async clients you need to use AsyncRetrying
instead of Retrying
!
Retry Callbacks¶
You can also define callbacks to be called before and after each attempt. This is useful for logging or debugging.
from pydantic import BaseModel, field_validator
import instructor
import tenacity
import openai
client = instructor.from_openai(openai.OpenAI())
class User(BaseModel):
name: str
age: int
@field_validator("name")
def name_is_uppercase(cls, v: str):
assert v.isupper(), "Name must be uppercase"
return v
resp = client.messages.create(
model="gpt-3.5-turbo",
max_tokens=1024,
max_retries=tenacity.Retrying(
stop=tenacity.stop_after_attempt(3),
before=lambda _: print("before:", _),
# """
# before:
# <RetryCallState 4682490016: attempt #1; slept for 0.0; last result: none yet>
# """
after=lambda _: print("after:", _),
), # type: ignore
messages=[
{
"role": "user",
"content": "Extract John is 18 years old.",
}
],
response_model=User,
)
assert isinstance(resp, User)
assert resp.name == "JOHN" # due to validation
assert resp.age == 18
print(resp)
#> name='JOHN' age=18
"""
before: <RetryCallState 4421908816: attempt #1; slept for 0.0; last result: none yet>
after: <RetryCallState 4421908816: attempt #1; slept for 0.0; last result: failed (ValidationError 1 validation error for User
name
Assertion failed, Name must be uppercase [type=assertion_error, input_value='John', input_type=str]
For further information visit https://errors.pydantic.dev/2.6/v/assertion_error)>
before: <RetryCallState 4421908816: attempt #2; slept for 0.0; last result: none yet>
name='JOHN' age=18
"""