Skip to content

Python

Why Logfire is a perfect fit for FastAPI + Instructor

Logfire is a new tool that provides key insight into your application with Open Telemtry. Instead of using ad-hoc print statements, Logfire helps to profile every part of your application and is integrated directly into Pydantic and FastAPI, two popular libraries amongst Instructor users.

In short, this is the secret sauce to help you get your application to the finish line and beyond. We'll show you how to easily integrate Logfire into FastAPI, one of the most popular choices amongst users of Instructor using two examples

  1. Data Extraction from a single User Query
  2. Using asyncio to process multiple users in parallel
  3. Streaming multiple objects using an Iterable so that they're avaliable on demand

Generators and LLM Streaming

Latency is crucial, especially in eCommerce and newer chat applications like ChatGPT. Streaming is the solution that enables us to enhance the user experience without the need for faster response times.

And what makes streaming possible? Generators!

Batch Processing OpenAI using asyncio and Instructor with Python

Today, I will introduce you to various approaches for using asyncio in Python. We will apply this to batch process data using instructor and learn how to use asyncio.gather and asyncio.as_completed for concurrent data processing. Additionally, we will explore how to limit the number of concurrent requests to a server using asyncio.Semaphore.